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A B S T R A C T   

Wastewater based epidemiology is increasingly being considered as a potentially useful tool for early warning 
about eventual new COVID-19 outbreaks. In addition, some authors are investigating on the detection and 
quantification of SARS-CoV-2 in sewage sludge. However, no paper has been published up to date indicating how 
this virus could be quantified in soil samples. In view of that, we review available data searching for method-
ological approaches that could guide on the quantification of SARS-CoV-2 (and even other pathogenic micro-
organisms) in soils.   

1. Perspective and discussion 

Various kinds of microorganisms have the potential to cause 
epidemic/pandemic diseases, and among them coronaviruses are a 
major concern, not just due to the current COVID-19 pandemic or pre-
vious epidemic diseases, but to the potential to generate new future 
outbreaks, with eventual new coronaviruses implicated (Daszak et al., 
2020).. (Fig. 4) 

As other viruses and other microorganisms, many different corona-
viruses are continuously changing by means of mutations, and some of 
them have the potential for causing diseases of zoonotic transmission 
(Ye et al., 2020). 

For SARS-CoV-2 and other different pathogenic microorganisms, the 
fecal-oral transmission route is a possibility that has to be considered 
(Heller et al., 2020; Hindson, 2020). In addition, for microorganism 
suffering frequent mutations, new characteristics in transmission, and 
the potential to be infective and cause diseases through new routes must 
be taken into account (Lyon and Wang, 2012; Longdon et al., 2014; 
Dawood, 2020). 

In view of that, the detection/quantification of SARS-CoV-2 (and/or 
other pathogenic microorganisms) could be not just an epidemiological 
useful tool for wastewater based epidemiology (WBE), reporting on the 
incidence of the disease (Bofill-Mas and Rusiñol, 2020; Bowser, 2020; 
Daughton; 2020; Farkas et al., 2020a; Kitajima et al., 2020; Mao et al., 
2020; Nabi et al., 2020; Núñez-Delgado, 2020a; Orive et al., 2020; Race 
et al., 2020; Sims and Kasprzyk-Hordern, 2020; Venugopal et al., 2020), 
but could inform on future risks of direct transmission, for those cases 
where eventual new mutations could make SARS-CoV-2 (or other 

microorganisms) clearly infective by the fecal-oral route. 
If this can be relevant for wastewater, it could be also for sewage 

sludge, and then for soils receiving the spreading of both materials, as 
well as for plants growing on these soils, and even for surface and 
groundwater in the area, which could be contaminated by means of 
runoff or leaching. Obviously, the risks of biotic pollution would be 
clearly higher in areas where wastewater and sewage sludge treatments 
(including disinfection) are scarce or, simply, do not take place. Further, 
the generation of aerosols containing SARS-CoV-2 (or other pathogenic 
microbes) in any of the locations where wastewater and sludge are 
spread, is another concern (Kitajima et al., 2020; Nghiem et al., 2020). 

Taking into account that, up to now, no peer-reviewed paper 
focusing on SARS-CoV-2 in sewage sludge has been published, even if 
some comments have been presented in few peer-reviewed publications 
(Carraturo et al., 2020; Farkas et al., 2020b), and no peer-reviewed 
paper has been published dealing with the detection, determination or 
quantification of SARS-CoV-2 in soils (with just three papers putting 
together soils and SARS-CoV-2 –Lal et al., 2020; Núñez-Delgado, 2020b; 
Steffan et al., 2020), in this discussion piece we would propose a 
methodological approach in order to define some steps to follow for 
studying this virus (and even other pathogenic microorganisms) in soils 
and soil-related samples. 

These studies could be: (A) In situ experiments and sampling; (B) 
Sampling for performing lab experiments.  

(A) In situ experiments and sampling 

To perform this kind of experiments and subsequent sampling, in 
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selected areas affected by wastewater spreading (for example, for irri-
gation purposes), or receiving the application of sewage sludge 
(frequently used as an organic amendment), specific devices could be 
installed. All materials should be sterilized (or disinfected using appro-
priate chemical compounds when sterilization is not possible). As a 
reference, we will consider materials and devices previously used in 
some of our field researches, where microorganisms were quantified. 

(i) For rather flat areas, without a slope that would favor a lateral 
surface or subsurface flow as runoff, liquid samples derived from soils 
can be sampled by means of devices that allow access to water subjected 
to vertical flow (descending and ascending), such as piezometers, or by 
means of “flow-catchers”, or even using tensiometers and portable 
vacuum pumps to provide the desired suction tension. These kinds of 
apparatus were previously described in papers where we focused on 
sampling and determination of both chemical and microbiological pa-
rameters, such as López-Periago et al. (2002). In fact, in these field ex-
periments it was found that fecal bacteria remained viable in leachates 
after passing through up to 90 cm of soil. Some details regarding these 
field works can be seen in Fig. 1. 

(ii) For sloped areas, also focusing on both chemical and microbio-
logical parameters, we used troughs to sample surface runoff, and also 
tensiometers and catchers for vertical flow (Núñez-Delgado et al., 2002). 
Some details are shown in Fig. 2 In these field experiments, while just 
counting fecal bacteria (not viruses) we detected a prolonged persis-
tence of viable fecal microorganisms in runoff samples generated in the 
pastureland where this field experiment was performed (Fig. 3). 

Similar kinds of experiments and devices to those indicated above 
[(i) and ii)] could be used in researches aiming to assess the degree of 
mobilization of viruses and/or other pathogenic microorganism of cur-
rent and future concern. 

After being collected, all samples must be placed on ice (or 

maintained cold by other appropriate means) and transported to the 
laboratory in conditions that allow the survival and preservation of 
living microorganisms, for further quantification and eventual deter-
mination of viability.  

(B) Sampling for performing laboratory experiments 

In this case, sampling strategies would be defined for those areas 
affected by spreading of wastewater or sewage sludge, then determining 
the specific sites where soils would be sampled. 

Soils could be sampled to obtain core structured tridimensional 
samples, using appropriate material (previously sterilized or dis-
infected), such as stainless steel cores and probes. The number of sam-
ples would be part of the overall strategy to allow the assessment of 
statistical significance for the results obtained. Frequently, these are 
surface samples, sometimes differencing among few soil depths, such as 
0–20 cm, 20–40 cm. This kind of samples can be used in the laboratory 
to generate or extract liquid samples corresponding to the soil solution. 
Even, different tensions (different pressures usually expressed as specific 
pF unities in this case) could be used to extract liquids from porous of 
different diameter and with different water retention potential. All the 
material used must be sterilized or disinfected before use, and properly 
treated (sterilized/disinfected/safely-disposed) after use. 

Another kind of samples can be taken by means of Edelman-type 
probes, without preserving the tridimensional structural integrity of 
the soil. They can be taken at various soil depths, frequently going from 
0 to 20 cm to much more depth than in the case of core samples. Once 
again, the specific sites and number of samples would be defined based 
on a clear sampling strategy that would allow that the results obtained 
can be assesses as regards statistical significance. For this kind of sam-
ples it is frequent that, in certain cases, groups of subsamples are put 

Fig. 1. Details of an experimental plot and devices used in some of our previous works in flatted areas, where samples were subjected to chemical and microbio-
logical determinations. 
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together to give more reduced groups of composite samples, thus 
simplifying, but having incorporated the diversity and variability of the 
individual samples. 

All samples must be handled and preserved using sterilized or dis-
infected material, finally putting them on ice and transporting to the 
laboratory for further processing. 

Obviously, all samples and materials must be perfectly identified. 
All researchers should wear appropriate protective equipment, and 

all debris generated must be packed in appropriate bags/containers for 
further disinfection/sterilization and eventual disposal as regulated by 
the local normative. 

Some of these soil samples can be used in soil column experiments. In 
fact, and just as an example, in previous laboratory column experiments 
we detected that fecal bacteria remained viable in leachates after pass-
ing through 70 cm of soil (Núñez-Delgado et al., 1996). Various kinds of 
soils columns can be used, such as those that we described in López et al. 
(1998) or in López-Períago et al. (2000). 

Also, taking into account that SARS-CoV-2 and other viruses may 
suffer different adsorption processes, some batch-type and stirred-flow- 
chamber experiments could be adapted to carry out investigations in this 
regard, starting from procedures such as those we have previously 
performed for chemical substances (Pérez-Novo et al., 2011; 

Bermúdez-Couso et al., 2012; Álvarez-Esmorís et al., 2020). 
At this point, in the absence of specific procedures defined for con-

centration, quantification and assessment of viability of SARS-CoV-2 in 
soil-related samples, our reflections and questions in this regard were as 
follows. 

What is proposed or assayed for quantification of SARS-Cov-2 in 
sewage sludge? 

What is used for other coronaviruses in soils or sludge? 
What is used for other enveloped viruses? 
Surrogate viruses would be needed for laboratory experiments 

dealing with soils when focusing on SARS-CoV-2? 
Some research could be performed about diversity of soil micro-

biome as potential defense against SARS-CoV-2 (and/or also other 
pathogenic microorganisms) in soils? 

As possible answers, regarding concentration and subsequent steps 
to finally quantify SARS-CoV-2, the procedures reviewed and com-
mented in Farkas et al. (2020b) for water and sludge could be considered 
for soil-related liquid samples (lixiviates/leachates, liquids from 
catchers, runoff samples, soil solution), and for solid soil samples, 
respectively, even if more specific procedures could be assayed and 
further refined for the soil environment. 

To take into account that the manuscripts commented by Farkas et al. 

Fig. 2. Experimental plot in a sloped pastureland used in some of our previous works, with details of troughs for runoff sampling, as well as of tensiometers and of 
flow-catchers. 
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(2020b) regarding SARS-CoV-2 in sewage sludge were preprints still not 
subjected to peer review at the time of the publication, so, to be seen 
with precaution as could be not published as were at that moment. Any 
case, Farkas et al. (2020b) indicate that “sludge samples were either 
subject to RNA extraction directly, or viruses were eluted and PEG 
precipitated from the matrix”, and then give further details, most of 
them for wastewater, but overall interesting as starting point for even-
tual future developments of methods eventually applicable to soil 

samples. Maybe, in the future, some of the preprints considered by these 
authors could be finally accepted and published, and then we, as all 
interested in performing procedures for different solid matrix (included 
soils), could take into account all those additional details. 

In addition, we could highlight selected references dealing with 
other viruses in sewage sludge, namely the papers by Bibby and Peccia 
(2013), Nag et al. (2020) and Martínez-Puchol et al. (2020), as well as 
other references for papers focusing on viruses in soils, specifically 

Fig. 3. Different kinds of laboratory columns used in some of our previous experiments, where both chemical and microbiological parameters were determined.  
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Kimura et al. (2008), Gutiérrez and Buchy (2012) (dealing with 
epidemic viruses), Williamson et al. (2017), and Kuzyakov and 
Mason-Jones (2018). These papers would be an additional aid for those 
researchers trying to develop specific methods for SARS-Cov-2 and/or 
related viruses in samples from soil environments. 

Finally, it can be taken into account that Wall et al. (2015) indicate 
that soil biodiversity would aid in the protection against microorganism 
that are pathogenic for humans and have the potential for causing 
epidemic outbreaks, whereas Geisen et al. (2019) emphasize on the fact 
that soil biodiversity should be preserved. In view of that, studies on soil 
biodiversity in relation to SARS-CoV-2 (and/or other pathogenic mi-
croorganisms) could be also carried out, and could be developed starting 
from procedures as those described in some of our previous works 
(Santás-Miguel et al., 2020). 
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Núñez-Delgado, A., 2020a. What do we know about the SARS-CoV-2 coronavirus in the 
environment? Sci. Total Environ. 727, 138647. https://doi.org/10.1016/j. 
scitotenv.2020.138647. 
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